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Abstract

Transient natural convection in liquid nitrogen around a heated wire is studied experimentally and numerically. A

thin bronze wire of 40 lm in diameter and 5.1 cm in length heated by Joule effect is used in experiments and time

evolutions of the wire temperature are measured through its electrical resistance. Numerical simulations of such flows

are performed by using velocity–pressure formulation, spectral methods and domain decomposition technique. Ex-

perimental data and numerical results are compared and show that although the wire is extremely thin its thermal

inertia plays an important role during early transients.

Scaling analyses performed for the convection set-up and transients yield t � q�1=2 and DT � q3=4, which are con-

firmed by numerical simulations.

For wires heated by Joule effect hybrid thermal conditions––combined Dirichlet and Neumann conditions are

proposed on the wire surface and validated by numerical simulations. On the other hand flow conditions to be imposed

on the outer artificial boundary are not well known and the answer to the question remains still open: two types of flow

conditions are tested and yield different velocity fields.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Natural convection around heated horizontal circu-

lar cylinders in an infinite fluid medium has been studied

extensively over the last decades due to numerous

technological applications. A wide range of Rayleigh

numbers (100 < Ra < 109) has been examined experi-

mentally and numerically for a large variety of fluids.

In spite of this, new findings have recently been re-

ported in the literature and the problem is still a current

topic: in order to study transition to turbulence an ex-

perimental investigation was carried out on a cylinder

heated with a uniform heat flux [1] and an analytical

study dedicated to the case of very low Grashof numbers

was also reported [2].

Early studies on the subject were mainly experimental

[3–7] and analytical [6,8] among others. Most of them

were devoted to analytical form of similarity solutions

and comparisons with experimental results. Experi-

mental data available are temperature fields measured

by either interferometry or thermocouples. Instabilities

are also investigated by some authors [5,7]. By the end of

seventies numerical computations of similarity solutions

[6,8] started. They were followed later on by attempts to

solve the complete Navier–Stokes and energy equations

in stream function–vorticity formulation (W–x) [9–11].

In the case of an isothermal horizontal cylinder, in order

to understand discrepancy observed between the dif-

ferent results, Saitoh et al. [11] proposed benchmark
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solutions for Prandtl number of 0.7 and Rayleigh

numbers ranging from 103 to 105. They used a fourth-

order finite difference method, a logarithmic coordinate

transformation as well as a solid outer boundary con-

dition placed at some 1000–20 000 times the cylinder

diameter. Recently, a critical Rayleigh number of

2:1� 109 corresponding to transition of the boundary

layer along the cylinder surface was determined by flow

visualisation and this transition to turbulence is induced

by three-dimensional effects [1]. Analytical efforts are

combined with numerical methods to give a full de-

scription of flow structure close to the line-sources for

very low Grashof numbers [2].

Most studies mentioned above concern steady flows

and very little data about transient flows are available in

the literature. Only Ostroumov [3] realised in 1956 a

pioneering experimental work on transient natural

convection around a platinum wire (diameter of 100 lm)

following a step heating by Joule effect. Visualisation of

flow fields and temperature distributions around the

wire has been performed using light-scattering particles

and the optical grid method respectively. A time-se-

quence is also given numerically by Saitoh et al. [11].

Qualitative agreement between these results is very good

although in one case the cylinder surface is kept at

constant temperature while in another the wire is heated

by a constant power. After the heating process is swit-

ched on, the hot fluid moves up, two symmetric circu-

lations form at each side of the cylinder and rise away as

time progresses. The isotherms, in form of a mushroom,

also ‘grow’ in time.

The present work is concerned with transient natural

convection around a line heat source (very thin wire)

induced by a step heating. It is mainly motivated by the

onset of natural convection flow and the superheat of

the line heat source following a heating step. We con-

ducted for that purpose both numerical and experi-

mental studies.

So far most of numerical studies on natural convec-

tion around cylinders have been realised using stream

function–vorticity formulation. Only one recent work

deals with velocity–pressure formulation and with the

issue of prescribing appropriate boundary conditions

[12]: a pressure condition is suggested. More studies

under velocity–pressure formulation are therefore useful

and necessary, that is why in the present work numeri-

cal simulations have been performed under velocity–

pressure formulation. We are also concerned with the

proper boundary conditions in the far-field because

physical domains around cylinders are unbounded and

one has to choose an artificial boundary in the far-field

and the corresponding boundary conditions. Another

Nomenclature

Cp specific heat of liquid nitrogen at constant

pressure (J kg�1 K�1)eCC specific heat of bronze (J kg�1 K�1)

D wire diameter (m)

g gravity acceleration (m/s2)

h average heat transfer coefficient (Wm�2 K�1)

L wire length (m)

Pr Prandtl number ð¼ m=jÞ
q heat flux (W/m2)

Q heat power or heat loss rate (W)

r radial distance (m)

R electrical resistance of the wire (X)

R wire radius (m)

R0 radial position of the outer boundary (m)

Ra Rayleigh number ð¼ ½gbðTw � T0ÞD3	=ðmjÞÞ
t time (s)

T temperature (K)

u radial velocity component (m/s)

v azimuthal velocity component (m/s)

p pressure deviation from hydrostatic pressure

(N/m2)

U voltage (V)

b coefficient of volumetric thermal expansion

(K�1)

DT ¼ T � T0 superheat (K)

c temperature coefficient of bronze (K�1)

j thermal diffusivity (m2/s)

k thermal conductivity of liquid nitrogen

(Wm�1 K�1)ekk thermal conductivity of bronze (Wm�1 K�1)

l dynamic viscosity of liquid nitrogen

(kgm�1 s�1)

m kinematic viscosity of liquid nitrogen (m2/s)

q density of liquid nitrogen (kg/m3)eqq density of bronze (kg/m3)

h azimuthal position in polar system

Subscripts

f fluid

J Joule effect

k wave number in Fourier space

L per unit length

s supports

w wire

v volumetric (per volume)

0 related to initial or ambient condition

1 related to the 1 X/8 W electrical resistance
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reason for using velocity–pressure formulation is due to

the fact that boundary conditions of stress free type in

the far-field seem more plausible, but they do not appear

naturally in stream function–vorticity formulation. As

the far field boundary conditions did not produce sat-

isfactory results, Saitoh et al. were led to push away the

artificial boundary and used a solid boundary (external

natural convection becomes then internal natural con-

vection), which is not optimal in terms of computation

cost. A better solution seems to find other artificial

boundary conditions which can be applied to a position

not too far from the cylinder (or wire) and yield correct

flow structure.

Another issue of the numerical work is about the

boundary condition to be applied on the wire surface

when the wire is heated by a constant power. If one

neglects the wire thermal inertia the power used to heat

the wire is transferred to the surrounding fluid, it means

that on the wire surface �
R 2p
0

kðoT=orÞrdh is a constant

in time and it is a line source case. However, this does

not imply that the heat flux on the wire surface is uni-

form (i.e. �kðoT=orÞ on the wire surface is independent

of h) nor that the surface temperature of the wire is

constant. As line-sources used in experiments are mainly

thin wires heated by Joule effect, it is thought that the

wires should be considered as isothermal and this will be

discussed in detail.

In order to understand the physical problem and

compare with the numerical results we also carried out

an experimental investigation. A very thin bronze wire

of 40 lm in diameter and 5.1 cm in length is immersed in

liquid nitrogen. Temperature histories of the wire are

measured and compared with numerical results. As the

thermal inertia of a thin wire is very small, thin wires are

the best line heat-sources one could find. They also make

it possible to study heat transfer problems induced by a

step heating because fluid will react instantaneously to

the heating step due to the very small thermal inertia. In

other words, thin wires heated by Joule effect produce

nearly perfect heating steps at the solid–fluid interface,

which is not the case when using a massive heater.

Furthermore very small dimension of the wire and very

small Biot numbers (hR=~kk) suggest that temperature

fields in wires can be supposed to be uniform and

measured by wires’ electrical resistance.

It is noted that a line-source combined with a heating

step is commonly used for measuring thermal conduc-

tivity of fluids. This is the so-called transient hot-wire

method [13–17]. In this case, one rather attempts to

delay the onset of natural convection so that heat

transfer between wire and fluid remains mainly con-

ductive and experimental data fit better the theoretical

prediction for conduction. Therefore wires are set ver-

tically in experiments. Healy et al. [14] and Saito et al.

[17] investigated numerically transient laminar natural

convection induced by a vertical line heat source.

In next section experimental set-up will be presented,

it will be followed by descriptions of governing equa-

tions and numerical methods. Results obtained will then

be discussed before giving concluding remarks.

2. Experimental set-up

Experiments are performed in liquid nitrogen under

atmospheric pressure and saturation conditions. A

quasi-perfect thermostat is therefore achieved since any

heat contribution to a saturated fluid is converted into

latent heat. Only a slight temperature variation, less

than 0.15 K, is observed between the free surface and the

test cell due to hydrostatic overpressure. Furthermore

the low temperature of this cryogenic fluid allows us to

neglect radiation heat transfer. The line heat source is a

phosphorus bronze wire of 40 lm in diameter and 5.1

cm long. The aspect ratio, equal to 1250, is thought to be

high enough to reduce end effects. The tank is a cylin-

drical vessel of 15 cm in diameter and 50 cm in height.

The immersion depth of the test cell is approximately 40

cm. Since bronze is thermoresistive, the wire is both a

heater and a thermometer. Heat is supplied by Joule

effect:

qJðtÞ ¼
U 2

wðtÞ
RwðtÞ

1

pDL
ð1Þ

The mean temperature of the wire is determined by

measuring its electrical resistance. A prior calibration

yields a linear relationship between electrical resistance

and temperature in the considered temperature range:

DTw ¼ TwðtÞ � T0 ¼
RwðtÞ �R0

cR0

ð2Þ

where cR0 is constant and equal to 2:7� 10�3 X/K.

The wire is connected to four supports (Fig. 1): the

two internal contacts allow for voltage measurement

while the two external pins are used as current supply.

The voltage supports are copper made. They were de-

signed with a large thermal inertia so that their tem-

perature remains constant, equal to the bath

temperature, thus providing well-known boundary

conditions. Referring to Eq. (2), the variation of the

electrical resistance as a function of time remains neg-

ligible since both wire superheat and bronze thermal

coefficient are small. Then, in this particular case, gen-

eration of a heating step is achieved by means of a

voltage step. The only noticeable difference is observed

at the very beginning due to the significant temperature

rise occurring at that stage. The highest shift in heating

rate observed in experiments is below 3% of the step. A

schematic diagram of the electric circuit is presented in

Fig. 2. The wire of electrical resistance RwðtÞ is con-

nected in series with a resistor R1, a constant voltage

unit U0ðtÞ and a switching relay. The resistorR1 which is
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a 1 X/8 W type allows for current determination. Its

value remains ultrastable (dR1=R1 < 5� 10�4) regard-

less of the current intensity. The switch, a mercury relay

is closed in less than 10 ls and it is therefore compliant

with the expected time characteristics of the physical

phenomena. Due to the very low temperature coefficient

of the wire, two analog differential amplifiers with high

impedance inputs are required in order to measure

voltage changes at the wire and the resistor terminals,

Uw and U1 respectively. A detailed description of this

specific device is available elsewhere [18]. The output

amplified voltages are then connected to an eight-chan-

nel simultaneously sampling accessory which ensures a

time skew between consecutive channels never larger

than 50 ns. Data recording is finally performed using an

acquisition board whose performance is 12-bit resolu-

tion (i.e. 2.44 mV in the voltage input range 0–10 V) and

250 kS/s. The sampling frequency used in experiments is

4000 Hz. The wire electrical resistance is calculated as

follows:

RwðtÞ ¼
UwðtÞR1

U1ðtÞ
ð3Þ

Substituting RwðtÞ in Eqs. (1) and (2), one obtains the

average wire superheat and the heat flux supplied by

Joule effect. Heat transfer to the fluid is written then:

qfðtÞ ¼ qJðtÞ � ðeqq eCCÞD
4

dTw
dt

� QsðtÞ
pDL

ð4Þ

where QsðtÞ is the heating power lost by the wire sup-

ports. Even though this quantity remains delicate to

predict accurately, it is easy to estimate its magnitude at

steady-state. Since voltage supports are maintained at

bath temperature, a classical fin model allows for the

determination of temperature distribution within the

wire. Heat lost by supports is thereafter derived using

Fourier’s law. Due to both wire dimensions and low o-

verheatings involved in the process (DT < 30 K), this

quantity is always smaller than 5% of the total heat

amount (see Appendix A and Table 1).

3. Mathematical equations and numerical methods

3.1. Governing equations

In this study fluid motion around the heating wire is

assumed to be two-dimensional and liquid nitrogen is

considered as a Newtonian fluid of density q, volumetric

expansion coefficient b, thermal diffusivity j (thermal

conductivity k and specific heat Cp) and kinematic vis-

cosity m. Boussinesq assumption is used although in the

range of heating power considered temperature field

may change some of the thermo-physical properties up

to 50% (Fig. 3) [19]. For each heating power we use the

values of thermal-physical properties at mean tempera-

ture, i.e., the average between measured wire tempera-

ture and ambient temperature, T0. In polar coordinates

the governing equations are then written:

Fig. 2. Electrical circuit.

Table 1

Wire overheating during later transients

Heat flux q (W/m2) DTN (K) DTE (K) Corrected DTE (K) Percentage of end effects (%) Percentage of heat loss (%)

2:9� 104 7.76 7:40
 0:02 7:75
 0:02 21 4.3

105 23.36 22:2
 0:4 23:2
 0:4 20 4

DTN––Numerical results, DTE––Experimental measurements, Corrected DTE––Corrected experimental data by taking into account the

end effects, Percentage of end effects––ratio between the length affected by end effects and total length of 5.1 cm and Percentage of heat

loss––ratio between power lost through wire supports and the total heating power.

Fig. 1. Test cell.
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where t is the time, u and v are the radial and azimuthal

velocity components, p is the pressure deviation from the

hydrostatic pressure and T is the temperature.

If one desires to study the effects of wire thermal

inertia during the transient, Eq. (5) should be coupled

with the following heat conduction equation in the wire:

eqq eCC oT
ot

¼ ekk o2

or2

�
þ 1

r
o

or
þ 1

r2
o2

oh2

�
T þ Qv ð6Þ

where Qv is a uniform volumetric heat source.

3.2. Numerical methods

Eqs. (5) and (6) are discretised in time by a second-

order scheme of finite difference type: for stability rea-

sons the diffusion terms are treated implicitly while

convective terms are treated explicitly. The periodicity in

the azimuthal direction makes it natural to resort to

spatial approximation based on tensor products of

Chebyshev polynomials and Fourier series as basis

functions. Furthermore domain decomposition tech-

nique is associated with spatial discretisation in radial

direction: r 2 ½R;R0	 is divided into several sub-domains;

in each sub-domain Chebyshev collocation method is

used in radial direction and Fourier Galerkin method in

the other one. Once applied to Eqs. (5) and (6) the re-

sulted system consists of, apart from velocity–pressure

coupling, Helmholtz equations. Due to the orthogonal-

ity of the Fourier modes, these Helmholtz equations

reduce to K mono-dimensional linear equations which

are solved by a direct LU factorisation (decomposition

of a matrix into product of a lower and an upper tri-

angular matrices). The coupling between diffusion op-

erators for u and v can be classically alleviated by the

change of variables uþ ¼ uþ iv and u� ¼ u� iv [20]. The
velocity–pressure coupling is handled by standard pro-

jection method making use of time-splitting [21]. At the

sub-domain interfaces, we impose that the functions and

their first normal derivatives on the interfaces are con-

tinuous. Further details on the numerical methods can

be found in [22].

3.3. Boundary and initial conditions

As explained in Section 1, in external natural con-

vection the physical domain is unbounded and main

difficulties of numerical studies of such flows lie in the

choice of artificial outer boundary of the computational

domain and the corresponding flow conditions which

are unknown. We first choose a radial position R0 which

is relatively large compared with R the wire radius in

order to fix the computational domain ðr; hÞ 2 ½R;R0	 �
½0; 2p	. At r ¼ R0, i.e. on the outer boundary, recently

Kelkar and Choudhury [12] suggested a pressure con-

dition under velocity–pressure (V–P) formulation. We

used for velocity–pressure coupling the following con-

ditions:

p ¼ 0 ð7Þ

and

o

or

�
þ 1

r

�
ðu; vÞ ¼ 0 ð8Þ

ou
or

þ u
r
þ 1

r
ov
oh

¼ 0

ou
ot

þ u
ou
or

þ v
r
ou
oh

� v2

r
¼ � 1

q
op
or

þ m
o2

or2
þ 1

r
o

or
� 1

r2
þ 1

r2
o2

oh2

� �
u� 2

r2
ov
oh

� �
� gbðT � T0Þ cosðhÞ

ov
ot

þ u
ov
or

þ v
r
ov
oh

þ uv
r
¼ � 1

qr
op
oh

þ m
o2

or2
þ 1

r
o

or
� 1

r2
þ 1

r2
o2

oh2

� �
vþ 2

r2
ou
oh

� �
þ gbðT � T0Þ sinðhÞ

oT
ot

þ u
oT
or

þ v
r
oT
oh

¼ j
o2

or2
þ 1

r
o

or
þ 1

r2
o2

oh2

� �
T

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð5Þ

Fig. 3. Thermo-physical properties versus temperature over-

heating. At atmospheric pressure, the saturated temperature

equal to 77.364 K is used as T0 and the corresponding thermo-

physical properties [19] are q ¼ 807:4 kg/m3, Cp ¼ 2038

J kg�1 K�1, k ¼ 0:01395 Wm�1K�1 and l ¼ 1:64� 10�4

kgm�1 s�1.
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As for the temperature at r ¼ R0 we used standard

conditions: for inflow region temperature is set to the

ambient value T0 and for outflow region radial temper-

ature gradient is set to zero [10], i.e.

T ¼ T0 if u > 0
oT
or ¼ 0 if u < 0

ð9Þ

As indicated in [10], this temperature condition in out-

flow region is not suitable for low Rayleigh number

cases and further studies are required. Note, however,

that in transient cases, the gradient condition is equiv-

alent to T ¼ T0 before thermal plumes rise to the artifi-

cial outer boundary. The transient results presented in

this paper are obtained before the plume front crosses

the outer boundary.

On wire surface we apply no-slip conditions for ve-

locity and constant heat transfer through wire surface:

u ¼ v ¼ 0 ð10Þ
and

� R
Z 2p

0

k
oT
or

����
R

dh ¼ QL ð11Þ

where QL is the heating power or heat loss rate per unit

length of the line source. As in the azimuthal direction

flow field is periodic at constant r, it is natural to expand

temperature into Fourier series: T ðr; hÞ ¼
P1

k¼0
bTTkðrÞ�

expðikhÞ. No matter which kind of boundary conditions

for bTTk with k 6¼ 0, Eq. (11) reads always:

QL ¼ �
X1
k¼0

Rk
obTTk

or

�����
R

Z 2p

0

expðikhÞdh ¼ �2pRk
obTTk¼0

or

�����
R

which is a Neumann condition for k ¼ 0. One can cer-

tainly impose for other k a homogeneous Neumann

condition ðobTTk=or ¼ 0Þ on the wire surface. This would

mean that the temperature on the wire surface is non-

uniform because obTTk=or ¼ 0 means bTTk 6¼ 0. However it

seems to us more reasonable to consider the wire as

isothermal since the bronze wire used is a very good heat

conductor compared with liquid nitrogen and the Biot

number corresponding to the highest heating rate is

smaller than 10�4. One has therefore to find the uniform

temperature which guarantees the global heat flux con-

tinuity. This can easily be realised in Fourier space: for

the constant mode a constant heat flux is imposed while

for the other modes we consider homogeneous Dirichlet

condition, i.e. the coefficients of these Fourier modes

are set to zero on the wire surface. The boundary con-

ditions used for temperature on the wire surface are

therefore the following combined Neumann–Dirichlet

conditions:

� k obTTk
or

����
R

¼ QL=ð2pRÞ for k ¼ 0bTTkðRÞ ¼ 0 for k 6¼ 0

ð12Þ

For the coupled system consisting of Eqs. (5) and (6), Qv

is related to QL as following: QL ¼ pR2Qv. We applied

heat flux conservation across the wire surface:

k
oT
or

¼ ekk oT
or

ð13Þ

Solving the coupled equations (5) and (6) makes it

possible to not only check the validity of the proposed

hybrid conditions––combined Neumann and Dirichlet

conditions on the wire surface but also quantify the in-

ertia of the bronze wire and its effects on the transients.

Initial conditions used in transient cases are u ¼ v ¼
0 (liquid nitrogen motionless) and T ¼ T0 ¼ 77:364 K

which is the saturation temperature of liquid nitrogen at

atmospheric pressure.

4. Results and discussions

In this section we first address the structure of

‘steady’ flows around a cylinder at a constant tempera-

ture in order to validate the methodology. Then we

present numerical results and experimental measure-

ments of transient natural convection flows and a

comparison between numerical, experimental and ana-

lytical results: the validity of the proposed hybrid con-

ditions on the wire surface is checked, the effects of the

wire thermal inertia are quantified.

4.1. Benchmark solutions

The benchmark problem proposed by Saitoh et al.

[11] concerns natural convection around a cylinder of

constant surface temperature at Rayleigh numbers

ranging from 103 to 105. Results in the literature have

been mainly obtained with stream function–vorticity

formulation and only one work [12] has been conducted

with pressure–velocity formulation using a pressure

boundary condition in the far-field.

It is first important to make clear that for external

natural convection there is no steady state solution when

the physical domain is unbounded. However it is pos-

sible to obtain steady solutions if one considers a limited

region around the cylinder and the Rayleigh number is

not very high.

Comparison between the present results and the

benchmark solutions in the literature is performed for

Ra ¼ 103 and 104 and based on average Nusselt numbers

(hD=k) on cylinder surface. Nusselt numbers are calcu-

lated after steady conditions are achieved around the

cylinder.

We used the pressure condition (Eq. (7)) associated

with Eq. (8) for both Rayleigh numbers investigated: R0 is

fixed at 22.5R and a spatial resolution of 161� 101 (8

sub-domains) is used. Concerning the correspond-

ing steady states, Nusselt numbers are equal to 2.98 at

346 M.-C. Duluc et al. / International Journal of Heat and Mass Transfer 46 (2003) 341–354



Ra ¼ 103 and 4.77 at Ra ¼ 104, which should be com-

pared respectively with 3.024 and 4.826 provided by

Saitoh et al. [11]. The difference is of order 1% and from

this unique criterion the code can be considered as vali-

dated.

The corresponding flow structures are displayed in

Fig. 4. They are similar to those reported in [12], but

look quite different from those obtained by Saitoh et al.

[11] when using a very large computational domain. The

difference lies in that outside the thermal plume fluid

motion is downward whereas Saitoh et al. showed an

upward fluid motion. This downward fluid motion

outside the thermal plume, which is also reported by

other authors [10,12], is surprising and induced by the

outer boundary conditions. In fact the pressure condi-

tion combined with homogeneous Neumann conditions

for velocity implies that fluid flow is almost normal to

the outer boundary.

In order to understand the influence of outer

boundary conditions on flow structures, we imple-

mented slightly different conditions:

p
q
¼ m

ou
or

�
þ u

r

�

0 ¼ m
ov
or

�
þ v

r

� ð14Þ

R0 is set to 22.5R and a spatial resolution of 161� 161 is

used. Fig. 5 displays the corresponding flow structures.

It can be seen that fluid motion outside the thermal

plume is almost horizontal, which seems physically more

reasonable. Note that although different outer boundary

conditions yield different flow structures in the far field,

near the cylinder velocity fields and temperature fields

are very similar and Nusselt numbers are almost iden-

tical. It seems therefore that using Nusselt number as a

unique criterion to characterise external natural con-

vection is not sufficient. Since very few experimental

results are available on velocity fields, no conclusion can

be drawn so far on flow structures and further works are

needed to determine far-field flow structure and identify

the proper outer boundary conditions.

4.2. Transient problem

In the following we present the results obtained for

two heat fluxes, q ¼ 2:9� 104 and 105 W/m2. Experi-

mental data are compared with analytical solution of

heat conduction and results obtained by using two types

of numerical simulations: one neglects the wire thermal

inertia and another takes it into account (conjugate heat

transfer). Numerical simulations are performed with

R0 ¼ 500R and a spatial resolution of 161� 141 (8 sub-

domains).

4.2.1. Transients without thermal inertia

Fig. 6 displays temperature histories of the wire ob-

tained respectively from experiments and numerical

simulation without thermal inertia. At first glance, even

the experimental chart lies beneath numerical curve, both

shapes look very similar: temperature first rises sharply,

reaches a maximum, then decreases smoothly towards a

constant value (which may be called steady state). Times

corresponding to the maximum (temperature overshoot)

are in good agreement as well as those for steady-state

Fig. 4. Benchmark solutions at Ra ¼ 103 (left) and Ra ¼ 104

(right) obtained with pressure conditions––Eq. (8). Stream

functions (left half) and temperature fields (right half) are pre-

sented in numerical interferogram form.

Fig. 5. Benchmark solutions at Ra ¼ 103 (left) and Ra ¼ 104

(right) obtained with conditions (14). Stream functions (left

half) and temperature fields (right half) are presented in nu-

merical interferogram form.
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achievement. The temperature difference observed at

final stages can be noticeably reduced by considering end

effects. Since both voltage supports are maintained at

bath temperature, the wire superheat measured during

experiments is inherently an average over the total wire

length and its value is lower than the overheating in the

central section. Simple theoretical analysis, detailed in

Appendix A, attests that end effects occur on almost 20%

of the total wire length. As numerical two-dimensional

simulations are performed for an infinite line heat source,

only uniform temperature in the central section has to be

compared with numerical results (see Table 1 and Fig. 6).

Plotting this value on the same figure, we observe better

agreement between the results.

Concerning the earlier stages of the transients, heat

transfer is achieved by pure conduction into the liquid.

Neglecting in a first approximation the end effects, this

configuration is equivalent to an infinite cylindrical heat

source in a semi-infinite medium and isotherms are

concentric cylinders. This transient, one-dimensional

conduction problem has an analytical solution. Taking

into account the wire diameter but neglecting its thermal

inertia, heat transfer in the liquid may be predicted

considering a hollow cylinder of outer radius R0. Tem-

perature of liquid in contact with the wire surface reads

(cf. Appendix B):

DT ðR; tÞ ¼ QL

k
1

2p
ln

R0

R

� �"
þ 1

2R

X1
n¼1

CnðRÞ expð � ja2
ntÞ

#
ð15Þ

with coefficients

CnðRÞ ¼ J 2
0 ðR0anÞ

J0ðRanÞY1ðRanÞ � Y0ðRanÞJ1ðRanÞ
an½J 2

1 ðRanÞ � J 2
0 ðR0anÞ	

The number of terms required to ensure convergence

of the series at the r.h.s. of Eq. (15) is determined using

the following criterion:

DT ðR; 0Þ ¼ 0

In the present calculation, a ratio R0=R equal to 100 is

selected, 1500 terms yield DT ðR; 0Þ ¼ 0:22 K and 10 000

terms are required to obtain DT ðR; 0Þ ¼ 0:034 K.

As can be seen in the close-up (Fig. 6), there is a good

agreement between theoretical solution of conduction

and numerical simulation in the initial phase during

which heat transfer is purely conductive. They indicate

also the time at which convective effects become signif-

icant when both curves diverge. Concerning the differ-

ence between experimental and numerical solutions, it

could result from the wire thermal inertia, the heat loss

by wire’s supports and the variation of liquid nitrogen’s

thermo-physical properties with temperature. In fact the

total heat power supplied by Joule effect is not com-

pletely transferred to the fluid: part of it is used to heat

the wire and part of it is lost through the supports. As

the difference between experiments and numerical sim-

ulation is perceptible as soon as step begins, i.e. when

wire superheats are very low and temperature rise is

sharp, we therefore conclude that the wire thermal in-

ertia must be taken into account.

4.2.2. Conjugate transients

In order to quantify inertia effects, another type of

numerical simulations is performed by solving the cou-

pled equations (5) and (6). Wire temperature is averaged

over ðr; hÞ 2 ½0;R	 � ½0; 2p	 so that it can be compared

with experimental data. Temperature histories of the

wire obtained for q ¼ 2:9� 104 and 105 W/m2 are

plotted in Fig. 7 together with those obtained previ-

ously. During the early transient, temperature superheat

in the conjugate case is different from that obtained

without thermal inertia (the superheat is less important

because wire retains part of the heating power) and it

agrees better with experimental chart. In both cases

temperature evolutions are the same at later time stages

Fig. 6. Time evolutions of wire superheat: q ¼ 2:9� 104 W/m2

(top) and q ¼ 105 W/m2 (bottom).
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as it could be expected. This means that although the

wire is extremely thin, its thermal inertia, no matter how

small it is, cannot be neglected and plays an important

role in early transients. One therefore has to take it into

account as soon as an accurate prediction of early stages

of the transients is requested, like for instance in tran-

sient hot wire method.

Note that despite the consideration of the thermal

inertia there is still discrepancy between experimental

data and numerical results during the later stages

(t > 0:01 s). It seems that other effects come into play as

time progresses. The discrepancy observed could result

from three-dimensional end effects as well as from the

variation of fluid properties with temperature. Further

studies are thus necessary to minimise these effects or

take them into account.

It is also to note that for both considered heat

fluxes temperature distributions on the wire surface are

visualised during numerical simulations: temperature is

uniform there since the largest value of the non-constant

temperature modes in Fourier space is about 2� 10�6 of

the superheat; the corresponding mode is expðihÞ. We

conclude that the hybrid temperature condition pro-

posed for the wire surface stands.

4.2.3. Transient flow structures and scalings

Although inertia affects early stages of the transients,

flow structures during the transients are very similar.

Fig. 8 displays several instantaneous stream-functions

and temperature fields during the transient produced by

the heating step of 105 W/m2, obtained without taking

into account inertia effects.

Flow structures during the transient are similar to

those presented by Saitoh et al. [11]. At the very begin-

ning of the transient, heat transfer is conductive (iso-

therms are circles) and very weak flow is induced around

the wire (flow is symmetrical about the vertical plane

through the wire’s axis and stream-functions are sym-

metrical about the horizontal plane through the wire’s

axis). Symmetry about the horizontal plane is broken

later on (Fig. 8) due to the fact that hot fluid moves

upwards: the centre of stream-function (the initial vor-

tex) is located above the wire, isotherms below the

wire are slightly squeezed and those above dilated.

Fig. 8. Instantaneous stream-functions and temperature fields (q ¼ 105 W/m2).

Fig. 7. Time evolutions of wire superheat during conjugate

transients: q ¼ 2:9� 104 W/m2 (top) and q ¼ 105 W/m2 (bot-

tom).
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Deformation of the isotherms is more pronounced when

the superheat reaches its peak value (t ¼ 0:0707 s). At

this moment convection plays already an important role

as the line heat source will be cooled down. With time

advancing fluid motion continues to squeeze the iso-

therms, at t ¼ 0:1478 s a ‘mushroom’ is formed due to

the leading edge effect. The mushroom grows in time

while the vortex centre moves up.

At t ¼ 0:3 s the superheat of the line source reaches

almost a constant value. Although there are no more

changes in superheat, the mushroom and the initial

vortex keep rising up and it is thus difficult to give a

sense to steady state when the physical domain is un-

bounded. It only makes sense to conclude about steady

state or steady solutions in a limited region around wires

or cylinders.

Concerning the transients it is interesting to know

how time and superheat scale with heating rate and

therefore do some scale analyses. At the beginning of the

transients, in the small region surrounding the wire

thermal diffusion balances thermal inertia:

DT
t

� j
DT
dr2

where dr characterises the extension of non-isothermal

zone. One gets t � dr2=j. Within dr there will be balance
either between buoyancy and inertia or between buoy-

ancy and friction:

v
t
� j

v
dr2

� gbDT or m
v

dr2
� gbDT

One can see that inertia differs from friction only by

a factor of Pr and for Pr of Oð1Þ they are of the

same order. These relations stand until convective

term in energy equation reaches thermal diffusion or

inertia:

v
DT
dr

� j
DT
dr2

Considering the fact that on the wire surface

q � kDT=dr, one obtains the following relations for the

convection onset:

dr � kmj
gbq

� �1=4

t �

ffiffiffiffiffiffiffiffiffiffiffi
km

jgbq

s
v � j

gbq
kmj

� �1=4

DT � q
k

kmj
gbq

� �1=4

Therefore concerning the convection onset, time scales

as q�1=2, superheat DT behaves as q3=4 and velocity scales

as q1=4. Analyses beyond this time scale are more com-

plicated. It is noted that before set-up of convective

motion the process is purely conductive: superheat DT is

linear with q and that dr and t are independent of q (it

means that at a given time t the extension of the non-

isothermal zone is independent of heat flux q). The

scaling we proposed will not stand for the very initial

phase of transients. One may hope on the other hand

that q3=4 and q give the lower and upper bounds to the

scaling of superheat DT on the wire surface.

In order to check the scaling analyses we performed

simulations of four transients by using the thermo-

physical properties of liquid nitrogen at T ¼ 80 K and

neglecting the wire thermal inertia. The corresponding

results, evolutions in time of temperature above the wire

along the symmetry line of thermal plume, are plotted

with different scales in Fig. 9. On the wire surface tem-

perature scales as q in the very initial phase and its long

time behaviour is limited by q3=4 and q, which agrees well

with the scaling analyses. For other points monitored

q3=4 is the upper bound of temperature scaling, i.e.

DT � qa with a < 3=4. As for the convection set-up and

transients, time scales as q�1=2: with this scaling tem-

perature peaks occur at the same time and time evolu-

tions collapse almost on one curve. Despite the fact that

the scale of t � q�1=2 is obtained for convection set-up, it

seems to characterise well long time behaviour of the

transients. Note nevertheless that well above the wire (at

29R, 45R and 61R for example) time scales of both the

plume front and the temperature peaks behave slightly

different from q�1=2.

In dimensionless form this will mean that time scale is

in inverse proportion to the square root of Rayleigh

number based on heat flux and wire radius. This square

root relationship is well known for internal natural

convection at high Rayleigh numbers. What is surprising

is that it holds for the heating rates and wire diameter

considered here which correspond to very small Ray-

leigh numbers (<1).

5. Summary and concluding remarks

We have performed both experimental and numerical

studies on the onset of natural convection induced by

a step heating around a line heat source. The heating

element used is a thin bronze wire of 40 lm in diameter

and 5.1 cm long. The working fluid is liquid nitrogen.

Results were mainly obtained for two heat fluxes of

2:9� 104 and 105 W/m2.

In terms of the time scale of the convective motion

onset and the final wire superheat there is a good agree-

ment between the numerical and experimental results.

Transients can be described as follows: at the beginning,

due to the poor efficiency of conductive heat transfer, a

sharp increase of the wire temperature is observed and a

maximum is rapidly achieved. At this particular moment,

isotherms in the fluid display an ovoid form and con-

vection effects become significant. The leading edge effect

then squeezes the top part of the isotherms and results in
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a slight decrease of the wire temperature and the forma-

tion of a ‘mushroom’ (head of a thermal plume). The

‘mushroom’ keeps progressing upwards and has little

influence on the wire temperature that tends to an as-

ymptotic value. Isotherms near the wire are in forms of

cone and steady conditions are observed.

Scaling analyses were carried out and provide, for the

transients of natural convection around thin wires, the

following results which are confirmed by numerical

simulations: On the wire surface DT � q during initial

phase and is limited by q3=4 and q after convection set-up.

Time scale of convective motion behaves like q�1=2 and

well above the wire q3=4 provides the upper bound of

DT .

Further comparison between numerical and experi-

mental results discloses the following points:

• Thermal inertia of a line heat source is significant at

early stages and has therefore to be considered if an

accurate prediction is desired. For example it seems

mandatory to take wire’s thermal inertia into account

for applications of transient hot-wire method.

• Even for the high aspect ratio considered in the pre-

sent experiment (L=D > 1000), three-dimensional end

effects take place on almost 20% of the wire length

and are likely to be the main reason of the discrep-

ancy observed between numerical simulations and ex-

periments.

Fig. 9. Scalings of temperature field along symmetry line of thermal plumes during transients (q1 ¼ 1:5� 104 W/m2, q2 ¼ 2:9� 104 W/

m2, q3 ¼ 5� 104 W/m2, q4 ¼ 105 W/m2; R1 ¼ R, R2 ¼ 5R, R3 ¼ 13R, R4 ¼ 29R, R5 ¼ 45R, R6 ¼ 61R). On the wire surface DT � q
during initial phase and is limited by q3=4 and q in convective regime. Time scale of convective motion behaves like q�1=2 and well above

the wire q3=4 provides the upper bound of DT .
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Numerical simulations performed in the present

work, using a velocity–pressure formulation, show that:

• A hybrid condition, combining Dirichlet and Neu-

mann conditions, is appropriate on the wire surface

since it takes into account the prescribed heating rate

as well as the uniform temperature of a line heat

source. A uniform heat flux condition is not suitable

in this particular thin wire case.

• The flow conditions used, i.e. Eq. (8), at the artificial

outer boundary of the computational domain, yield

similar results as the pressure condition suggested

by Kelkar and Choudhury [12], but the flow structure

is different from that obtained by using a very large

computational domain [11]. It is concluded that the

stress-free conditions used in the present work and

those used by Kelkar and Choudhury [12] are not

the appropriate conditions in the sense that, assuming

the computation in the large domain is correct, they

fail to reproduce the corresponding flow structure.

Although the benchmark solutions provided by Sai-

toh et al. [11] are physically more plausible, the lack of

experimental data makes difficult to conclude on the real

flow structure around thermal plumes. Even though the

problem is not new and accurate temperature fields de-

livered by holographic interferometry are available in

the literature, more experiments, especially those mea-

suring velocity fields, are needed to shed light on the

flow structure of thermal plumes and provide reference

for numerical simulations. Such measurements can be

obtained by particle image velocimetry (PIV) for in-

stance. Let us stress that numerical studies of external

natural convection are quite few compared with those of

internal natural convection (rectangular and circular

enclosures for example). This is probably due to the fact

that far flow fields and consequently the numerical

conditions to be applied are not well known. More in-

vestigations of external natural convection should be

encouraged to work out the far field flow conditions,

which is the main difficulty to be overcome when doing

numerical studies of such flows.
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Appendix A. Temperature distribution in the wire at

steady-state

We consider a thin wire along which an electric

current of constant strength I is flowing. Both ends are

at prescribed temperature T0 and temperature profile is

symmetrical about the middle of the wire. The wire

(radius R and length L) is in a surrounding medium at

temperature T0 in which heat is released with a heat

transfer coefficient h. Considering steady-state condi-

tions, the problem reads [23, p. 152]:

d2T
dx2

� 2h
kR

ðT � T0Þ ¼ �x
k

where x is the internal heat generation (W/m3) defined

as RI2=pR2L.
If the electrical resistivity of the wire varies linearly

with temperature, one obtains R ¼ R0½1þ cðT � T0Þ	.
Equation of heat conduction reads:

d2ðT � T0Þ
dx2

� a2ðT � T0Þ ¼ �x0

k

where

a2 ¼ 2h
kR

� R0cI2

kpR2L
and x0 ¼

R0I2

pR2L

In the case of a2 positive, temperature distribution

along the wire is given by

T ðxÞ ¼ T0 þ
x0

ka2
1

�
� coshðaxÞ
coshðaL=2Þ

�
ðA:1Þ

Heat loss rate by supports can be derived from Fourier’s

law:

Qs ¼ �2pR2k
dT
dx

����
x¼L=2

¼ 2pR2x0 tanhðaL=2Þ=a

and the relative heat loss is then Qs=ðRI2Þ.
The superheat is obtained then by averaging

T ðxÞ � T0 over the wire length L:

DT ¼ x0

ka2
1

�
� tan hðaL=2Þ

aL=2

�
ðA:2Þ

For experimental results reported in the present paper,

the following parameters are available at any time: heat

flux supplied by Joule effect qJ, current intensity in the

wire I and the wire overheating averaged along the wire

length DT . After DT reaches its asymptotic value, these

parameters become constant and the theoretical results

presented above can be used to determine the tempera-

ture distribution in the wire.

Given a constant value of DT , a is obtained by

solving Eq. (A.2) and then used to calculate, according

to Eq. (A.1), the temperature profile in the wire which is

plotted below for both heat fluxes q ¼ 2:9� 104 and 105

W/m2:
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Appendix B. 1D transient heat conduction in a hollow

cylinder

A motionless medium of thermal conductivity k and

thermal diffusivity j bounded by two circular surfaces of

respective radii R and R0 (R0 > R), is considered. Initial
and boundary conditions are as follows: T ðr; 0Þ ¼ T0 at

t ¼ 0 for rPR, QL ¼ �2pRkðoT=orÞ at r ¼ R for t > 0

and limr!1 T ðr; tÞ ¼ T0 for t > 0.

The heat diffusion equation to be solved is

oT
ot

¼ j
o2T
or2

�
þ 1

r
oT
or

�
The solution is written [23, p. 203]:

DT ðr; tÞ ¼ QL

k
1

2p
ln

R0

r

� �"
þ 1

2R

X1
n¼1

CnðrÞ expð � ja2
ntÞ

#
where coefficients

CnðrÞ ¼ J 2
0 ðR0anÞ

� J0ðranÞY1ðRanÞ � Y0ðranÞJ1ðRanÞ
an½J 2

1 ðRanÞ � J 2
0 ðR0anÞ	

and an

are the positive roots of the following transcendental

equation:

J1ðRaÞY0ðR0aÞ � Y1ðRaÞJ0ðR0aÞ ¼ 0

J0 and J1 are Bessel functions of the first kind of order

zero and one while Y0 and Y1 are Bessel functions of the
second kind of order zero and one.
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